СОДЕРЖАНИЕ
Контрольное задание №1. 3
Экономико-математическая модель межотраслевого баланса (модель Леонтьева «Затраты-выпуск»)
1.20. Условно экономика разделена на 4 сектора:
1 - отрасли, производящие средства производства (группа А),
2 - отрасли, производящие предметы потребления (группа Б),
3 - сельское хозяйство,
4 - прочие отрасли.
Требуется:
1. По данным баланса рассчитать объемы валовой продукции, выпущенные каждой отраслью, матрицу коэффициентов прямых затрат;
Проверить выполнение условия продуктивности (по всем критериям).
2.Для планового периода вычислить:
Матрицы коэффициентов полных и косвенных затрат;
Валовый выпуск каждой отрасли для трех вариантов плана выпуска конечной продукции:
I– увеличить выпуск конечной продукции в каждой отрасли на 10%;
II– увеличить выпуск конечной продукции 1-ой отрасли на 3%, 2-ой – на 5%, 3-ей – на 5%, 4-ой – на 6%;
III– увеличить выпуск конечной продукции 1-ой отрасли на 7%, 2-ой отрасли – на 6%, 3-ей – на 7%, 4-ой – на 8%
3. Рассчитать межотраслевые поставки, обеспечивающие ассортимент выпуска конечной продукции по 1-му варианту.
Контрольное задание № 2. 8
Модели сетевого планирования и управления
Задания для самостоятельного решения
Построить сетевой график (длина работы - tij ) Выделить критический путь и найти его длину. Определить резервы времени каждого события . Определить резервы времени (полные, частные первого вида, свободные и независимые) всех работ и коэффициенты напряженности работ, не лежащих на критическом пути. Выполнить оптимизацию сетевого графика по времени.
Контрольное задание № 3
Модели линейного программирования. 2
Необходимо:
Записать прямую задачу. Определить план выпуска продукции, при котором прибыль от ее реализации будет максимальной (при решении задачи показать все промежуточные симплекс-таблицы – просто решить в EXCEL без промежуточных вычислений не допускается – в этом случае задача защитываться не будет. Допускается использование EXCEL для проверки правильности решения). В остальных пунктах использовать таблицы EXCEL для ответа на вопросы допускается – но при этом необходимо их интерпретировать, т.е. пояснить смысл полученных значений. Записать двойственную задачу. Получить решение двойственной задачи. Пояснить экономический смысл полученных объективно обусловленных (теневых) оценок ресурсов. Найти интервалы устойчивости двойственных оценок по отношению к изменению запаса ресурсов каждого вида. Определить изменение максимальной прибыли от реализации продукции при увеличении запаса ресурса 1 на 10 ед., ресурса П – на 50 ед. и уменьшении запаса ресурса Ш на 30 ед. Оценить раздельное влияние этих изменений и суммарное влияние. Сопоставить оценку затрат и прибыли по оптимальному плану и каждому виду продукции.
Контрольное задание № 4. 12
Модели управления запасами
4.8. Один из цехов кондитерской фабрики каждые сутки должен подавать несколько заказов на поставку патоки для приготовления карамели. Каждый заказ поступает как одна партия, причем в доставке патоки возможны перебои. Патока расходуется равномерно (с постоянной интенсивностью).
Суточная потребность цеха – 1 т. патоки.
Затраты на подготовительные операции для выполнения каждого из заказов 10 д.ед.
Стоимость хранения 1 кг. патоки 1 д.ед в час. Отсутствие патоки приводит к убытку 2 д.ед на каждый недостающий килограмм патоки в час.
Найти оптимальный объем партии (средние затраты) и максимальный уровень запасов, предполагая, что дефицит можно погасить мгновенно.
Контрольное задание № 5. 14
В таблице заданы три временных ряда: первый из них представляет ВНП (млрд. $) за 10 лет уt, второй и третий ряд – потребление (млрд. $) х1t и инвестиции (млрд. $) х2t.
Требуется:
Вычислить матрицу коэффициентов парной корреляции и проанализировать тесноту связи между показателями. Построить линейную и нелинейную модели регрессии, описывающие зависимость уt от факторов х1t и х2t Оценить качество моделей. Вычислить среднюю ошибку аппроксимации и коэффициент детерминации. Проанализировать влияние факторов на зависимую переменную (β-коэффициент) и оценить их значимость, найти доверительный интервал. Проверить остатки на нормальность распределения. Определить точечные прогнозные оценки ВНП для 5 наблюдений (объясняющие переменные задать самостоятельно).
Результаты, полученные в EXCEL, необходимо интерпретировать – просто таблицы без соответствующих выводов не засчитываются.
Список использованных источников. 21
а) графы 1 и 3 заполняются на основе исходных данных.
б) в графе 2 записывается количество предшествующих работ по сетевому графику или определяется из графы 1 по числу работ, имеющих второй цифрой в коде ту, с которой начинается данная работа.
г) в графе 4 раннее начало работ, выходящих из исходного события, а раннее окончание этих работ равно их продолжительности (гр. 5). Раннее начало последующих работ определяется путем выбора максимального из сроков раннего окончания предшествующих работ. Количество сравниваемых сроков равно количеству предшествующих работ графы 2. Раннее начало последующих работ можно определить после того, как найдено раннее окончание предшествующих. В свою очередь раннее окончание каждой работы находится как сумма величин раннего начала и продолжительности данной работы;
г) продолжительность критического пути определяется после заполнения граф 4 и 5 как максимальная величина из сроков раннего окончания работ, которые ведут к завершающему событию 9;
д) найденная величина критического пути ТKP дням заносится в графу 7 для всех работ, ведущих к завершающему событию. Затем заполнение ведется снизу вверх. Находятся все работы, следующие за рассматриваемой, и определяются разности между поздним окончанием этих работ и их продолжительностями. Минимальная из величин заносится в графу 7;
е) в графе 6 позднее начало работы определяется как разность позднего окончания этих работ и их продолжительности (из значений графы 7 вычитаются данные графы 3);
Список использованной литературы:
Акулич И.Л. Математическое программирование в примерах и задачах. – М., 1993. Алоев Т.Б., Гурфова Р.В., Асланова Е.М. Практикум по экономико-математическим методам и моделям. – Нальчик, 2003. Карасев А.И., Кремер Н.Ш., Савельева Т.И. Математические методы и модели в планировании. – М.: Экономика, 1987. Канторович Л.В., Горстко А.Б. Оптимальные решения в экономике. – М., 1978. Кузнецов Ю.Н., Кузубов В.И., Волощенко А.В. Математическое программирование. – М ., 1988. Кузнецов А.В., Сакович В.А., Холод Н.И. Высшая математика: математическое программирование. – Минск, 1998.

